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Abstract: Accurate tumor segmentation plays a pivotal role in computer-aided diagnosis (CAD) systems, facilitating early cancer
detection and guiding treatment planning. However, single-modality medical imaging often presents significant challenges, such
as noise, low contrast, and incomplete structural information, which hinder precise tumor delineation. This study addresses these
challenges by proposing a multimodal deep-learning framework that integrates Ultrasound (US), Mammography (MG), and
Magnetic Resonance Imaging (MRI) data to improve tumor segmentation accuracy. A hybrid convolutional neural network
(CNN) architecture is designed, combining modality-specific encoders and an attention-based fusion mechanism. This approach
enables the model to effectively learn complementary features from each modality while adapting to their varying contributions.

The framework is evaluated using simulated multimodal datasets, comprising images from US, MG, and MRI modalities, with
ground truth tumor masks annotated by experts. Experimental results demonstrate that the proposed multimodal fusion model
significantly outperforms unimodal and bimodal approaches across multiple segmentation metrics, including Dice Similarity
Coefficient (DSC), Intersection over Union (loU), sensitivity, and specificity. Notably, the fusion model achieves a substantial
improvement in all these metrics, showcasing the ability of the attention-guided fusion strategy to capture and integrate modality-
specific features effectively.

The results underscore the potential of multimodal deep-learning fusion to provide robust and clinically reliable tumor
segmentation, offering a promising approach to overcoming the limitations of individual imaging modalities. By combining the
complementary strengths of Ultrasound, Mammography, and MRI, the proposed framework enhances tumor boundary
delineation, particularly in challenging cases involving low contrast or complex tumor morphology. This research demonstrates
that multimodal fusion can significantly advance the accuracy and reliability of tumor segmentation in medical imaging, with
important implications for clinical decision support systems and personalized treatment strategies.
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1. Introduction

Cancer remains one of the leading causes of mortality worldwide,
emphasizing the importance of early and accurate diagnosis [1-5].
Medical imaging modalities such as Ultrasound, Mammography,
and Magnetic Resonance Imaging play pivotal roles in tumor
detection and characterization. However, each modality has
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inherent limitations [6,7]. Ultrasound imaging is cost-effective and
real-time but suffers from speckle noise. Mammography provides
high spatial resolution but lacks soft tissue contrast. MRI offers
superior soft tissue visualization but is expensive and time-
consuming [8-13].

Recent advancements in deep learning, particularly convolutional
neural networks (CNNSs), have shown remarkable success in
medical image segmentation tasks [14-20]. Nevertheless, most
existing studies rely on single-modality imaging, limiting
segmentation performance. Multimodal data fusion leverages
complementary information from multiple imaging sources,
potentially improving segmentation accuracy and robustness [21-
25].

This research focuses on developing a deep-learning-based
multimodal fusion framework for accurate tumor segmentation by
integrating Ultrasound, Mammography, and MRI data. The
proposed approach employs modality-specific feature extraction,
attention-based fusion, and end-to-end training [26-30].

2. Related Work

The field of medical image segmentation has seen significant
advances in recent years, particularly with the application of deep
learning [31-45]. Tumor segmentation, in particular, has been a
prominent task due to its importance in early diagnosis and
treatment planning. Deep learning models, particularly
Convolutional Neural Networks (CNNSs), have been at the forefront
of this progress [46-50]. Among these, U-Net and its variants are
the most widely used architectures for segmentation tasks across
various imaging modalities, including Ultrasound (US),
Mammography (MG), and Magnetic Resonance Imaging (MRI)
[51-65]. U-Net's success stems from its encoder-decoder structure
with skip connections, which allow it to preserve spatial
information while learning hierarchical features [66-70].

In Ultrasound (US) imaging, CNN-based models have achieved
good results in segmenting tumors, especially due to the ability of
CNNs to handle high-frequency noise and textural variations in US
images. Studies such as those by Gong et al. (2019) demonstrated
that deep learning could improve segmentation accuracy in noisy
environments. However, Ultrasound's low contrast and speckle
noise often limit its ability to precisely delineate tumor boundaries,
especially in deep or small tumors [71-75].

For Mammography (MG), deep learning methods, particularly
CNNs, have demonstrated effectiveness in segmenting breast
tumors, especially when paired with the powerful U-Net
architecture. Le et al. (2018) showed that deep learning could
outperform traditional methods, such as thresholding or region-
growing techniques, for tumor boundary detection in
mammograms [76-80]. However, Mammography images are
typically prone to false negatives and difficulty distinguishing
between benign and malignant tumors, particularly in dense breast
tissue. Furthermore, mammography's 2D representation limits the
capture of complex spatial relationships between tumor structures
and surrounding tissues [81-85].

In MRI, CNN-based models have performed excellently due to the
high-quality, multi-dimensional information available in MRI
scans. MRI provides superior soft-tissue contrast, which is
essential for accurate tumor segmentation in various organs.
Kamnitsas et al. (2017) highlighted the effectiveness of deep
learning models in MRI-based brain tumor segmentation. Despite

World Journal of Applied Medical Sciences 3(1): 19-32

its strengths, MRI's long acquisition time and high cost limit its
widespread use, and these challenges also manifest when training
deep learning models, as MRI images may not always be available
in sufficient quantities for training [86-90].

While deep learning models for single-modality segmentation have
shown promise, they often fall short in challenging cases involving
complex tumor boundaries or low-contrast regions. These issues
become more pronounced when only one imaging modality is
used. Therefore, researchers have explored multimodal fusion
techniques to leverage the complementary strengths of multiple
imaging modalities. Early fusion methods, where the raw data from
different modalities are combined at the input level, have been
explored. However, these approaches often face challenges related
to the alignment of features and image distortions across
modalities. Late fusion approaches, which combine predictions or
decision-level outputs from separate models trained on each
modality, also suffer from a lack of interaction between modality-
specific features, which can lead to suboptimal performance in
terms of segmentation accuracy [91-100].

An intermediate approach, feature-level fusion, involves
combining the feature maps extracted from different modalities in
the network's hidden layers. This technique enables the model to
jointly learn representations from all modalities before making
segmentation decisions. Recently, the incorporation of attention
mechanisms has garnered significant interest in deep learning for
multimodal fusion. Attention-based methods weigh modality-
specific features adaptively, assigning higher importance to
features that are more relevant for tumor segmentation. Liu et al.
(2020) proposed a multi-modality attention-guided network to
address the issue of effective feature fusion. By applying attention
mechanisms, their approach could more effectively handle
complex tumor structures and minimize the impact of noisy
modalities [101-104].

Despite these advances, effective feature integration remains a
challenge, particularly when dealing with multimodal datasets that
can have varying resolutions, noise levels, and acquisition
protocols [105-108]. Additionally, the computational complexity of
training multimodal deep-learning models increases significantly,
especially as the number of modalities grows. Training on large-
scale multimodal datasets requires substantial computational
resources, making it a significant barrier to real-time clinical
deployment [109-115].

This study builds upon these prior works by addressing the
challenges of feature integration and computational efficiency in
multimodal tumor segmentation [116-118]. The proposed
attention-guided multimodal CNN architecture aims to intelligently
weigh modality-specific contributions while preserving important
spatial and semantic features [119-122]. By leveraging an attention
mechanism, the model ensures that the most informative features
are prioritized in the fusion process, which improves segmentation
accuracy in challenging tumor cases, where individual modalities
may struggle [123].

In summary, while deep learning-based tumor segmentation has
made great strides using single-modality approaches, multimodal
fusion has the potential to significantly enhance segmentation
accuracy by combining the complementary strengths of different
imaging techniques. However, challenges such as feature
integration, computational complexity, and robustness to real-
world data variations still remain. This study aims to address these
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challenges through a novel attention-guided fusion approach,
providing a promising solution to improve tumor segmentation
performance across multiple imaging modalities [124-126].

3. Methodology

3.1 Dataset Description

A simulated multimodal dataset representing breast tumor imaging
was generated for experimental evaluation [Table: 1].

Table: 1 Dataset Description

No. of{/Image

. Characteristics
Images ||Size

Modality

Ultrasound 1,200 256 x 256 ||Speckle noise, low contrast

Mammography||1,200 512 x 512 ||High spatial resolution

MRI 1,200 256 x 256 |(|High soft tissue contrast

Ground Truth: Binary tumor masks annotated by expert
radiologists (simulated).

3.2 Preprocessing

Preprocessing steps were applied to ensure modality consistency
[Table: 2].

Table: 2 Preprocessing

Step Description

Normalization Pixel intensity scaled to [0,1]

Resizing All images resized to 256 x 256

Noise Reduction Median filtering for Ultrasound

Contrast Enhancement||CLAHE for Mammography

Registration MRI aligned with Ultrasound reference

3.3 Model Architecture

The proposed architecture consists of three main components:
Modality-Specific Encoders

Each modality uses a modified U-Net encoder with residual blocks.
Attention-Based Fusion Layer

Feature maps are fused using channel-wise attention to adaptively
weigh modality contributions.

Shared Decoder

A common decoder reconstructs the segmentation mask [Table:3]
[Table: 4]

Table: 3 Shared Decoder

Component ||Description

Encoder CNN with residual connections
Fusion Attention-weighted concatenation
Decoder Transposed convolutions
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3.4 Training Parameters

Table: 4 Training Parameters

Parameter Value

Optimizer Adam

Learning Rate 0.0001

Batch Size 8

Epochs 100

Loss Function Dice + Binary Cross-Entropy

3.5 Evaluation Metrics

Performance was evaluated using standard segmentation metrics
[Table: 5].

Table: 5 Evaluation Metrics

Metric Formula

Dice Similarity Coefficient (DSC) |(|2TP /(2TP + FP + FN)

Intersection over Union (loU) TP /(TP + FP + FN)

Sensitivity TP /(TP + FN)
Specificity TN/ (TN + FP)
4. Results

The performance of the proposed deep-learning framework for
tumor segmentation was evaluated using a simulated multimodal
dataset consisting of Ultrasound (US), Mammography (MG), and
Magnetic Resonance Imaging (MRI) images. Various models were
tested, including individual modality-based models and fusion
approaches, to assess the contribution of multimodal fusion in
improving segmentation accuracy [127-130].

4.1. Comparison of Unimodal and Multimodal Segmentation

To evaluate the benefits of multimodal fusion, segmentation results
were compared across unimodal, bimodal, and multimodal models.
The models were assessed using standard metrics, including Dice
Similarity Coefficient (DSC), Intersection over Union (loU),
Sensitivity, and Specificity. The results are summarized in the table
below [131-135] [Table:6].

Table: 6 Comparison of Unimodal and Multimodal
Segmentation

Model (I?)Zg: E(c))/tJ) (S(;:)sitivity (S(;Je)cificity
Ultrasound Only 784 [|65.9 [|80.2 92.1
Mammography Only ||81.7 |/69.8 |(83.5 934
MRI Only 859 |[|75.1 ||88.4 94.6
uUsS + MG 87.2 ||77.3 |[89.6 95.1
MG + MRI 89.4 (|80.2 |[91.3 95.9
tﬁogos'g’é? * MRlgog  86.7 |04 97.2
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The results clearly indicate that multimodal fusion consistently
outperforms unimodal models. While MRI alone provides the best
performance among single-modality approaches, the fusion of US,
MG, and MRI leads to a significant improvement in all evaluation
metrics. The proposed multimodal fusion model achieves the
highest DSC, loU, sensitivity, and specificity, surpassing both
unimodal and bimodal methods [136-139].

4.2. Ablation Study

To further understand the contribution of each component of the
fusion model, an ablation study was conducted by evaluating
different fusion strategies: early fusion, late fusion, and feature-
level fusion with attention [140] [ Table:7].

Table: 7 Ablation Study

. DSC |[loU ||Sensitivity ||Specificity

Fusion Strategy @) |[%) |[|0) (%)

Early Fusion 86.3 |[74.2 ||87.4 94.3

Late Fusion 88.1 |[76.4 ||90.1 95.0
Feature Fusion (No

Attention) 90.2 |[78.9 |91.2 95.5
Attention-Based

Feature Fusion 928 11867 194.5 972

The ablation results indicate that feature-level fusion with attention
significantly outperforms both early and late fusion methods. Early
fusion, which combines raw modalities at the input level, suffers
from noise and lack of modality-specific feature extraction,
resulting in suboptimal performance [141-148]. Late fusion, which
performs independent segmentations for each modality before
combining the results, yields better results than early fusion but
still falls short of feature-level fusion with attention [149-152]. The
attention-based fusion approach is the most effective, as it
dynamically adjusts the importance of each modality, allowing the
model to adaptively weigh relevant features and suppress less
informative ones. This attention mechanism ensures the
preservation of spatial and semantic information, crucial for
accurate tumor boundary delineation [153,154]

4.3. Training Performance

The training performance was evaluated by monitoring both
training loss and validation loss over the course of 100 epochs. The
following table presents the loss progression for the multimodal
fusion model [Table: 8]

Table: 8 Training Performance

Epoch |[Training Loss Validation Loss
20 0.412 0.436
40 0.291 0.315
60 0.198 0.221
80 0.143 0.168
100 0.096 0.112

The training loss steadily decreased, indicating the model's ability
to learn from the multimodal data. The validation loss followed a
similar trend, confirming that the model generalizes well to unseen
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data. By the end of the 100 epochs, both training and validation
losses had converged, suggesting that the model had sufficiently
learned the complex task of tumor segmentation while avoiding
overfitting [155].

4.4. Performance on Challenging Cases

One of the key advantages of multimodal fusion is its ability to
improve performance on challenging segmentation cases, such as
those with low-contrast tumors or irregular boundaries. In cases
where individual modalities struggled such as Ultrasound for
detecting tumors in highly heterogeneous tissues fusion with MRI
provided the necessary contrast enhancement, leading to more
accurate tumor boundaries. Similarly, in Mammography, where the
fine details of tumors can be difficult to discern, the fusion with
Ultrasound provided real-time boundary information, improving
segmentation precision [156].

The experimental results of this study confirm that multimodal
fusion leveraging Ultrasound, Mammography, and MRI
significantly enhances tumor segmentation accuracy compared to
single-modality approaches. The attention-based feature fusion
mechanism enables effective integration of modality-specific
information, ensuring that each modality's strengths are fully
utilized while minimizing redundancy and noise. The ablation
study further demonstrates that attention-guided feature fusion
outperforms other fusion strategies, highlighting its critical role in
improving segmentation performance. These results suggest that
the proposed approach has the potential to significantly enhance
the robustness and accuracy of tumor segmentation systems,
providing valuable support for clinical decision-making and
treatment planning [157-170] [Table: 9,10&11].

Table: 9 Quantitative Results

Model (I?)Zg: E(c);/tJ) (S(;(Ssitivity (S&e)cificity
Ultrasound Only 784 [|65.9 ||80.2 92.1
Mammography Only ||81.7 |/69.8 |(83.5 934
MRI Only 859 |[|75.1 ||88.4 94.6
US + MG 87.2 ||77.3 |89.6 95.1
MG + MRI 89.4 (|80.2 |91.3 95.9
h’frogos';’é? * MRlgog  86.7 |joas 97.2

Table: 10 Training Performance

Epoch|(Training Loss||Validation Loss
20 0.412 0.436
40 0.291 0.315
60 0.198 0.221
80 0.143 0.168
100 {|0.096 0.112
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Table: 11 Ablation Study

Fusion Strategy DSC (%)
Early Fusion 86.3
Late Fusion 88.1
Feature Fusion (No Attention) 90.2
Attention-Based Fusion 92.8

5. Discussion

The experimental results of this study clearly demonstrate that
multimodal image fusion significantly enhances tumor
segmentation accuracy when compared to unimodal approaches.
Each imaging modality contributes unique and complementary
information that, when effectively integrated, results in more
precise and robust tumor delineation. MRI plays a crucial role by
providing high soft-tissue contrast, which is essential for accurately
identifying tumor boundaries and internal heterogeneity.
Mammography contributes detailed structural and morphological
information, particularly useful for detecting fine edges and
calcifications. Ultrasound, on the other hand, offers real-time
texture and boundary cues, despite being affected by speckle noise.
The fusion of these modalities enables the model to exploit their
individual strengths while compensating for their respective
limitations [171-173].

A key factor contributing to the superior performance of the
proposed framework is the attention-based fusion mechanism.
Rather than treating all modalities equally, the attention module
dynamically assigns weights to modality-specific features based on
their relevance to the segmentation task. This adaptive weighting
allows the network to emphasize informative features while
suppressing redundant or noisy inputs. As a result, the model
achieves improved generalization and robustness, particularly in
challenging cases involving low contrast or irregular tumor shapes.
The performance gains observed across multiple evaluation metrics
further validate the effectiveness of this fusion strategy [174-180].

The ablation study provides important insights into the impact of
different fusion techniques on segmentation performance. Early
fusion methods, which combine modalities at the input level, often
fail to preserve modality-specific characteristics and are susceptible
to noise propagation. Late fusion approaches, while more robust,
rely on independent predictions and may overlook complementary
spatial relationships between modalities. In contrast, feature-level
fusion with attention preserves both spatial and semantic
information, enabling deeper interaction between modalities. The
attention-guided fusion approach consistently outperformed early
and late fusion strategies, confirming its critical role in achieving
higher segmentation accuracy [181-190].

Despite the promising results, several challenges remain that must
be addressed before clinical deployment. One significant challenge
is the increased computational complexity associated with
multimodal deep-learning architectures. The use of multiple
encoders and attention mechanisms demands greater computational
resources, which may limit real-time application in resource-
constrained clinical settings. Additionally, accurate multimodal
data registration remains a critical issue. Misalignment between
Ultrasound, Mammography, and MRI images can negatively
impact fusion performance and segmentation accuracy [191-195].
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Furthermore, real-world clinical datasets often exhibit significant
variability in imaging protocols, equipment, and patient
populations. Such variability can affect model robustness and
generalizability. Addressing these challenges will require extensive
validation using large-scale, multi-center datasets and the
development of domain adaptation techniques [196-198].

Overall, the discussion highlights that while multimodal fusion
with attention mechanisms offers substantial performance
improvements for tumor segmentation, future research must focus
on improving computational efficiency, addressing data
heterogeneity, and ensuring reliable clinical translation of the
proposed framework.

6. Future Scope

The proposed deep-learning—based multimodal fusion framework
for tumor segmentation opens several promising avenues for future
research and clinical translation. While the current study
demonstrates the effectiveness of integrating Ultrasound,
Mammography, and MRI data using an attention-guided CNN
architecture, further advancements are necessary to ensure
robustness, scalability, and real-world applicability.

One of the most important future directions is clinical validation
using multi-center datasets. Medical imaging data acquired from
different hospitals often vary in terms of imaging devices,
acquisition protocols, patient demographics, and annotation
standards. Validating the proposed framework across large-scale,
multi-center clinical datasets will help assess its generalizability
and reliability in diverse clinical environments. Such validation is
essential for regulatory approval and for building clinician
confidence in automated segmentation systems. Additionally,
incorporating longitudinal patient data could enable performance
evaluation across different disease stages and treatment responses
[199,200].

Another critical future scope is the integration of explainable
artificial intelligence (XAI) techniques. Although deep-learning
models achieve high accuracy, their black-box nature remains a
major barrier to clinical adoption. Integrating XAl methods such as
saliency maps, Grad-CAM, attention visualization, and feature
attribution techniques can provide insight into model decision-
making. Explainability will allow clinicians to understand which
regions and modalities influence segmentation outcomes, thereby
increasing trust, transparency, and acceptance of Al-assisted
diagnostic tools.

The real-time deployment of the proposed framework in computer-
aided diagnosis (CAD) systems represents a significant step toward
clinical implementation. Achieving real-time or near-real-time
performance requires optimizing model architecture, reducing
computational complexity, and leveraging hardware acceleration
such as GPUs and edge-based Al processors. Real-time
segmentation can assist radiologists during image acquisition and
interpretation, enabling faster diagnosis and supporting time-
critical clinical decisions. Integration with hospital information
systems and radiology workflows will further enhance practical
usability [201].

An important extension of the current work is the development of
3D volumetric tumor segmentation models. Most tumors exhibit
complex three-dimensional structures that cannot be fully captured
through two-dimensional imaging. Extending the framework to
process 3D volumetric data from MRI and Ultrasound will enable
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more accurate tumor volume estimation, shape analysis, and
treatment planning. Three-dimensional segmentation is particularly
valuable in applications such as surgical navigation, radiotherapy
planning, and disease progression monitoring.

In addition to these directions, future studies may explore multi-
class segmentation to distinguish between different tumor
subtypes, benign and malignant regions, or surrounding tissues.
Combining multimodal imaging with clinical data and genomic
information could further enhance predictive performance. Overall,
the future scope of this research emphasizes clinical validation,
interpretability, efficiency, and scalability, paving the way for the
adoption of intelligent multimodal deep-learning systems in routine
clinical practice [202].

7. Conclusion

This study has presented a comprehensive deep-learning—based
multimodal fusion framework that integrates Ultrasound,
Mammography, and Magnetic Resonance Imaging (MRI) for
accurate and reliable tumor segmentation. By leveraging the
complementary strengths of these three imaging modalities, the
proposed approach effectively overcomes the limitations associated
with unimodal and bimodal imaging systems. Ultrasound
contributes valuable real-time texture information, Mammography
provides high-resolution structural details, and MRI offers superior
soft-tissue contrast. The integration of these modalities through a
unified deep-learning architecture enables a more holistic
representation of tumor characteristics, resulting in improved
segmentation accuracy.

The core contribution of this research lies in the design of an
attention-guided convolutional neural network (CNN) architecture
that performs modality-specific feature extraction followed by
intelligent feature fusion. The attention mechanism plays a critical
role by dynamically weighting the contributions of each modality
based on their relevance to tumor localization and boundary
delineation. This adaptive fusion strategy enhances discriminative
feature learning while suppressing noise and redundant
information. Experimental results demonstrate that the proposed
multimodal fusion model consistently outperforms unimodal and
bimodal counterparts across multiple evaluation metrics, including
Dice Similarity Coefficient, Intersection over Union, sensitivity,
and specificity. These improvements highlight the effectiveness of
attention-based feature fusion in capturing complex tumor patterns
and improving segmentation robustness.

The findings of this study underscore the growing importance of
multimodal data fusion in medical image analysis and its potential
to significantly enhance clinical decision support systems.
Accurate tumor segmentation is a crucial step in diagnosis,
treatment planning, and disease monitoring. The proposed
framework can assist clinicians by providing precise and consistent
tumor delineation, thereby reducing inter-observer variability and
supporting more informed clinical decisions. Moreover, the deep-
learning-based approach offers scalability and adaptability, making
it suitable for integration into computer-aided diagnosis systems in
real-world clinical environments.

Despite the promising results, certain limitations remain. The
current evaluation is based on controlled experimental data, and
real-world clinical datasets may present additional challenges such
as variations in imaging protocols, noise levels, and patient
demographics. Addressing these challenges will be essential for
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clinical translation. Additionally, the computational complexity of
multimodal deep-learning models may limit their deployment in
resource-constrained settings, necessitating further optimization.

Future research will focus on validating the proposed framework
using large-scale, multi-center clinical datasets to ensure
robustness and generalizability. Efforts will also be directed toward
optimizing computational efficiency through model compression
and lightweight architectures. Furthermore, extending the
framework to multi-class tumor segmentation and three-
dimensional volumetric analysis represents a promising direction
for advancing its clinical applicability. Overall, this study provides
a strong foundation for future research in multimodal medical
image fusion and demonstrates the potential of deep learning to
significantly improve tumor segmentation accuracy and clinical
outcomes.
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