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Abstract: Chemotherapy is one of the main therapies for breast cancer, which is still one of the leading causes of cancer-related 

deaths globally. Chemotherapy resistance, which frequently results in treatment failure and a poor prognosis, is a major obstacle 

in the treatment of breast cancer. Early detection of chemotherapy resistance can greatly improve individualized treatment plans. 

In this work, we investigate how single-cell RNA sequencing (scRNA-seq) data might be used to predict chemotherapy resistance 

in breast cancer using machine learning (ML) models. Because cancer cells are heterogeneous, scRNA-seq offers a unique chance 

to identify genetic characteristics linked to treatment resistance at a fine level. Our goal is to use machine learning techniques to 

examine scRNA-seq data in order to find patterns and biomarkers that potentially indicate treatment resistance in breast cancer 

patients. 

We preprocessed publically accessible scRNA-seq data to filter and normalise gene expression profiles, then employed 

dimensionality reduction and feature selection methods. We assessed the predictive power of a number of machine learning 

models, such as Random Forest (RF), Support Vector Machine (SVM), and Neural Networks (NN), for chemotherapy resistance. 

Accuracy, precision, recall, F1-score, and AUC-ROC were used to assess the model's performance. According to our findings, 

chemotherapy resistance may be reliably predicted by machine learning models; the Neural Network model had the highest AUC-

ROC score. Furthermore, resistance was found to be significantly influenced by gene expression characteristics associated with 

immune response, cell cycle regulation, and drug metabolism. This work advances precision oncology by showing how single-cell 

sequencing and machine learning can be used to predict treatment resistance in breast cancer. The results imply that future clinical 

uses of ML models may play a significant role in customizing chemotherapy regimens for patients, enhancing results by 

preventing inefficient treatments. 

Keywords: Precision Oncology, Single-Cell Sequencing, Chemotherapy Resistance, Breast Cancer, Predictive Modelling, 

Biomarkers, and Drug Resistance. 

 

Highlights: 

⁕Single-cell pharmacological profiling with interpretable ML 

(scGSDR) 

⁕Integrated machine learning with bulk + single-cell RNA-seq 

for NAC response 

⁕Single-cell resolution drug response networks (scXDR) 

⁕Single-cell transcriptomics uncovers resistant subpopulations 

and evolutionary dynamics 

⁕Machine learning to decode tumor ecosystem and 

heterogeneity 

⁕ML-assisted gene signature models from scRNA data linked 

to drug resistance 

⁕Integrative single-cell and multi-omics ML frameworks 

⁕Deep learning and transformer-based histology + ML models 

for treatment response 

1. Scope: 

Chemotherapy is still the mainstay of treatment for breast cancer, 

one of the most prevalent and deadly malignancies in the world. 

Chemotherapy resistance is a significant problem that leads to 

tumour recurrence and a poor prognosis despite advancements in 

therapy [1-11]. Chemotherapy regimens can be made far more 

successful and needless side effects can be prevented by 

identifying individuals who are at risk of developing chemotherapy 

resistance before treatment failure occurs. The molecular 

heterogeneity of cancer cells can now be better understood because 

to recent developments in single-cell RNA sequencing (scRNA-

seq) [12-19]. By examining gene expression at the single-cell level, 

these technologies enable researchers to identify the variations in 

gene expression that may be linked to chemotherapy resistance 

[20-26]. For the analysis of complicated datasets, like scRNA-seq, 

machine learning (ML) models provide a potent tool for finding 

patterns that are difficult to see using conventional techniques. This 

study aims to predict treatment resistance in patients with breast 

cancer by using machine learning algorithms on single-cell 
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sequencing data [27-36]. This work attempts to find biomarkers 

linked to chemotherapy resistance and investigate how machine 

learning models can reliably predict which patients are likely to 

develop chemotherapy resistance by utilising the extensive data 

offered by scRNA-seq [37-50]. 

In order to create predictive models for chemotherapy resistance, 

the study preprocesses single-cell sequencing data and then applies 

a variety of machine learning models, including Random Forest, 

Support Vector Machine, and Neural Networks. Key metrics like 

accuracy, precision, recall, F1-score, and AUC-ROC will be used 

to assess the model's performance. Critical molecular 

characteristics that could function as predictive biomarkers for 

chemotherapy resistance can be identified using this method [51-

60]. 

Personalised medicine could be greatly impacted by the findings of 

this study. It will be feasible to customise chemotherapy treatments 

for each patient by integrating predictive models into clinical 

practice. This will increase response rates, decrease needless side 

effects, and eventually increase breast cancer patients' survival 

rates [61-70]. 

2. Relevant Work: 

Researchers now have unmatched knowledge into the cellular 

heterogeneity of breast cancer thanks to recent developments in 

single-cell RNA sequencing (scRNA-seq). The use of scRNA-seq 

to describe tumour microenvironments and find genetic signatures 

linked to chemotherapy resistance has been investigated in several 

research. For instance, research has demonstrated that cancer cells 

from various tumour areas may display unique gene expression 

patterns, making it challenging to treat them consistently 

(Bresciani et al., 2021). Additionally, study by Singh et al. (2020) 

showed that chemotherapy resistance is influenced by tumor-

associated stromal cells, opening up new ways to comprehend how 

non-cancerous cells within a tumour can affect treatment results. 

There has also been a lot of interest in the use of machine learning 

to predict treatment resistance in breast cancer. Drug resistance has 

been predicted using a variety of machine learning models based 

on gene expression profiles, including Support Vector Machines 

(SVM), Random Forest (RF), and deep learning models. To predict 

treatment response, for example, an ML model trained on 

transcriptome data from breast cancer cell lines demonstrated 

encouraging results (Gao et al., 2016). Zhang et al. (2018) used 

Random Forest models in another investigation to find important 

biomarkers that might indicate treatment resistance in breast 

cancer. In order to find novel drug resistance mechanisms, deep 

learning algorithms have also been applied to scRNA-seq data. Wu 

et al. (2020) classified many subtypes of breast cancer using deep 

neural networks based on single-cell transcriptome data; their 

results indicate that ML-based predictions may be more accurate 

and resilient than conventional techniques. Even with these 

developments, there are still difficulties in combining machine 

learning methods with single-cell sequencing data. More reliable, 

broadly applicable models that can be used with a variety of patient 

populations are required, yet problems with data preprocessing, 

dimensionality reduction, and model interpretability still exist. Few 

studies have employed single-cell RNA sequencing to predict 

chemotherapy resistance, especially in the setting of breast cancer, 

despite the fact that several have used machine learning for drug 

response prediction. By using machine learning and single-cell 

sequencing methods to develop a predictive model for 

chemotherapy resistance in breast cancer patients, this study adds 

to the body of existing research. This method offers a more 

thorough knowledge of the elements causing chemotherapy 

resistance by utilizing the intricacy of single-cell data, which may 

result in more precise forecasts and improved patient outcomes 

[71-80]. 

3. Introduction: 

One of the most popular treatments for breast cancer is 

chemotherapy, which is used to shrink the tumour and stop it from 

spreading. Breast cancer is a major cause of cancer-related death in 

women. Chemotherapy resistance is still a major problem in 

clinical oncology, nevertheless. Chemotherapy is initially effective 

for a significant percentage of patients; nevertheless, tumours 

inevitably relapse and develop resistance to additional treatment. 

The intrinsic molecular heterogeneity of breast cancer cells is the 

cause of these phenomena, which makes it challenging to forecast 

which individuals will become resistant and which treatments will 

work. Single-cell RNA sequencing (scRNA-seq) has become a 

potent tool in recent years for comprehending the molecular 

landscape of cancer at a level of resolution never seen before. The 

investigation of cellular heterogeneity inside a tumour is made 

possible by scRNA-seq, which offers insights into the gene 

expression profiles of individual cells, in contrast to bulk RNA 

sequencing, which averages gene expression across all cells in a 

sample. This is especially crucial for breast cancer, as tiny 

subpopulations of cancer cells with unique genetic changes or 

resistance mechanisms may develop treatment resistance. Large, 

complicated datasets like those produced by scRNA-seq are 

increasingly being analysed using machine learning (ML) 

algorithms. Patterns and relationships in the data that might not be 

immediately obvious through conventional statistical analysis 

might be found using machine learning algorithms, especially 

those used for classification and prediction. Molecular indicators 

predictive of treatment resistance in breast cancer can be found by 

using machine learning approaches on single-cell sequencing data. 

The purpose of this work is to use single-cell RNA sequencing data 

to create and assess machine learning models that can predict 

treatment resistance in breast cancer. In particular, we will examine 

gene expression profiles from samples of breast cancer to find 

characteristics that point to chemotherapeutic drug resistance. To 

find the model with the best predicted accuracy, we train and 

assess a number of machine learning models, such as Random 

Forest, Support Vector Machines, and Neural Networks. In order to 

find possible biomarkers for therapeutic application, we will also 

investigate which genes or pathways are most closely linked to 

chemotherapy resistance [81-97]. 

4.  Research and Methodologies: 

4.1Data Collection and Preprocessing 

We used publicly accessible single-cell RNA sequencing (scRNA-

seq) datasets from The Cancer Genome Atlas (TCGA) and the 

Gene Expression Omnibus (GEO) for this investigation. Gene 

expression profiles from a variety of breast cancer samples are 

included in these datasets, some of which have annotations 

regarding chemotherapeutic response and treatment. We carefully 

screened the datasets we chose to make sure they included 

pertinent data on tumour features and treatment results [98-104]. 

To guarantee the data's quality, the preparation pipeline was 

essential. The actions listed below were done: 
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1.  Quality Control: Standard quality control filters were 

used to eliminate low-quality cells. This involved 

eliminating cells that showed signs of cellular stress or 

injury, such as low gene counts, high mitochondrial gene 

expression, or high ribosomal gene expression. 

2. Normalization: To account for variations in sequencing 

depth among cells, gene expression data were 

normalised. To make sure that gene expression levels 

could be compared between various cells and samples, 

we employed techniques like log-transformation and 

global-scaling normalization. 

3. Gene Filtering: Genes deemed uninformative for further 

analysis were eliminated if they    were expressed in less 

than 10% of the cells. To concentrate on the most 

pertinent indicators of chemotherapy resistance, only 

highly variable genes from the entire dataset were kept. 

After preprocessing, we had high-quality, filtered, and 

normalised single-cell RNA sequencing data that was 

prepared for feature selection and additional analysis 

[105-114]. 

4.2. Dimensionality Reduction and Feature Selection 

Finding the genes most likely to be connected to 

chemotherapy resistance required feature selection. We used 

two main methods: 

1. Variance Filtering: Since they contributed little variability 

or discriminatory strength to the classification job, genes with 

low variance across cells were eliminated. Only highly 

variable genes that are expected to differentiate between 

chemotherapy-sensitive and resistant cells were kept. 

2. Correlation Analysis: To eliminate redundant features, we 

performed pairwise correlation analysis. To prevent 

multicollinearity, which could impair model performance, 

highly correlated genes were eliminated. 

Dimensionality Reduction was carried out utilising two 

methods after feature selection: 

• Principal Component Analysis (PCA): PCA was used to 

preserve the greatest variance while reducing the 

dimensionality of the data. In order to facilitate visualization 

and interpretation, this phase assisted in converting the high-

dimensional gene expression data into a lower-dimensional 

space. 

• t-Distributed Stochastic Neighbour Embedding (t-SNE): The 

high-dimensional data was visualised in two- or three-

dimensions using t-SNE. By identifying groups of cells with 

comparable gene expression profiles, this method may be able 

to identify trends linked to chemotherapy resistance [115-

128]. 

4.3. Models for Machine Learning 

Using the single-cell RNA sequencing data, we used three distinct 

machine learning models to forecast treatment resistance: 

1. Random Forest (RF): To increase accuracy and manage 

high-dimensional data, Random Forest is an ensemble 

learning technique that combines the predictions of several 

decision trees. Using feature importance analysis, RF is very 

good at detecting important characteristics linked to 

chemotherapy resistance. 

2. SVM, or support vector machine: A linear classifier that 

performs well in high-dimensional domains is SVM. It creates 

a hyperplane with the greatest margin between the two classes 

(chemotherapy-sensitive and chemotherapy-resistant). SVM 

works well with complex decision boundaries and smaller 

datasets. Neural Networks (NN): Neural networks are a deep 

learning approach capable of modeling complex, nonlinear 

relationships between gene expression features. We used a 

feedforward neural network to model the intricate patterns in 

gene expression that are indicative of chemotherapy resistance 

[129-132]. 

4.4. Model Training and Evaluation 

We used 10-fold cross-validation to assess the models' 

generalizability. In order to ensure that the model's performance is 

robust and does not overfit to a single subset, this method splits the 

dataset into ten subsets, training the model on nine of them and 

evaluating it on the remaining one. 

The following measures were used to assess the models: 

• Accuracy: The percentage of accurate forecasts in both 

sensitive and resistive situations. 

• Precision: The model's capacity to accurately detect 

chemotherapy-resistant cells among all cases of projected 

resistance. 

• Recall: The percentage of real chemotherapy-resistant cells 

that the model accurately recognized. 

• F1-Score: This balanced indicator of model performance is 

the harmonic mean of precision and recall. 

The model's capacity to differentiate between chemotherapy-

resistant and chemotherapy-sensitive instances is evaluated using 

AUC-ROC, or the Area Under the Receiver Operating 

Characteristic Curve [133-135] [Table:1]. 

Table:1 Performance results are summarized 

Model Accuracy Precision Recall 
F1-

Score 

AUC-

ROC 

Random Forest 0.85 0.88 0.84 0.86 0.90 

Support Vector 

Machine 
0.82 0.80 0.83 0.81 0.87 

Neural Network 0.88 0.90 0.85 0.87 0.92 

These assessment criteria offer a thorough understanding of each 

model's capacity to correctly identify samples that are 

chemotherapy-sensitive and chemotherapy-resistant. Using single-

cell RNA sequencing data, the neural network model showed the 

best performance across all evaluation measures, indicating that it 

was the most successful model for predicting chemotherapy 

resistance in breast cancer [136-145]. 

5.  Results and Discussion: 

5.1Model Performance 

A 10-fold cross-validation method was used to assess each model's 

performance. The findings are summed up in [Table: 2]: 
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Table: 2 Model Performance 

Model Accuracy Precision Recall 
F1-

Score 

AUC-

ROC 

Random Forest 0.85 0.88 0.84 0.86 0.90 

Support Vector 

Machine 
0.82 0.80 0.83 0.81 0.87 

Neural Network 0.88 0.90 0.85 0.87 0.92 

In every evaluation metric, the neural network model fared better 

than the other models, especially in terms of AUC-ROC, which 

shows how well it can differentiate between samples that are 

chemotherapy-resistant and those that are chemotherapy-sensitive. 

5.2. Significance of Features 

The most crucial characteristics for predicting chemotherapy 

resistance were found using the Random Forest model. The most 

significant predictors were identified as genes related to drug 

metabolism, cell cycle regulation, and immunological response 

[146-150]. 

6. Future Perspectives: 

In order to predict chemotherapy resistance in breast cancer, this 

work shows the intriguing potential of combining machine learning 

(ML) with single-cell RNA sequencing (scRNA-seq). However, a 

number of issues need to be resolved before a proof-of-concept 

may be used in practical clinical settings. Three main areas can be 

the focus of future research: clinical validation, model 

enhancements, and data integration [151-154]. 

6.1. Data Integration 

The use of only single-cell RNA sequencing data is one of the 

study's primary shortcomings. The intricacy of cancer biology is 

not fully captured by scRNA-seq, despite the fact that it offers 

insightful information about cellular heterogeneity. Integrating 

scRNA-seq with other omics data, including as genomic (DNA 

sequencing), proteomic, and metabolomic data, is crucial to 

increasing the models' predictive accuracy and resilience. We can 

get a more thorough and all-encompassing understanding of 

chemotherapy resistance by integrating several levels of data. For 

instance, proteomic data may provide information on post-

translational modifications and protein activity, whereas genomic 

data may help detect mutations and copy number variations that 

contribute to resistance [Table:3][155]. 

Table 3: Potential Data Types for Integration 

Data Type Key Insights for Chemotherapy Resistance 

Single-Cell RNA 

Sequencing 

Gene expression variability and tumor 

heterogeneity 

Genomic Data 

(DNA-seq) 

Mutations, copy number variations, and 

genomic alterations 

Proteomic Data 

Protein expression, post-translational 

modifications, and signaling pathway 

activation 

Metabolomic 

Data 

Changes in cellular metabolism that affect 

drug response 

To achieve smooth data fusion and interpretation, complex multi-

omics platforms and sophisticated bioinformatics pipelines will be 

needed for the integration of these many data types. 

6.2. Enhancements to the Model 

Even while the neural network model performed better in 

predicting chemotherapy resistance, there are still a number of 

areas that might be improved. In order to better capture complex 

patterns in sequential or spatial data, future research should 

investigate more sophisticated deep learning architectures, such as 

convolutional neural networks (CNNs) or recurrent neural 

networks (RNNs). Furthermore, during chemotherapy treatments, 

reinforcement learning (RL) could be investigated as a way to 

adaptively enhance model predictions in real-time. RL may be 

especially helpful in optimizing treatment plans based on 

continuing patient data, enabling dynamic modifications and 

improved patient outcomes [156-158]. 

6.3. Validation in Clinical Practice 

Thorough validation using actual patient data is necessary to apply 

these findings to clinical practice. The ML models' generalizability 

across various patient demographics and tumour subtypes will be 

ensured by clinical validation. The usefulness of these ML models 

in predicting chemotherapy resistance and directing treatment 

choices might be evaluated through prospective clinical trials. We 

can verify the clinical relevance of model predictions and direct 

their eventual implementation in precision oncology by comparing 

them to clinical outcomes, such as progression-free survival or 

overall survival [Table:4] [159-161]. 

Table 4: Future Research Focus Areas 

Focus Area Description Expected Impact 

Data 

Integration 

Combining scRNA-seq 

with genomic, proteomic, 

and metabolomic data 

More comprehensive 

view of 

chemotherapy 

resistance 

Model 

Improvements 

Exploring deep learning 

with more complex 

architectures or RL 

Improved model 

accuracy and 

adaptability 

Clinical 

Validation 

Conducting prospective 

clinical trials using real-

world data 

Confirm clinical 

utility and guide 

treatment decisions 

7.  Conclusions: 

Using single-cell RNA sequencing (scRNA-seq) data, this work 

highlights the substantial potential of machine learning (ML) 

models in predicting treatment resistance in breast cancer. Our 

results show that by identifying important chemical characteristics 

in breast cancer cells, machine learning algorithms—especially 

deep learning models like neural networks—can precisely predict 

treatment resistance. These characteristics, which are sometimes 

obscured by the enormous complexity of single-cell gene 

expression data, offer crucial insights into the resistance 

mechanisms, ultimately improving the accuracy of treatment plans. 

The successful application of machine learning to the interpretation 

of scRNA-seq data, which captures the heterogeneity of cancer 

cells at a resolution previously unattainable with bulk sequencing 
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approaches, is one of the study's significant accomplishments. We 

discovered a number of important genes and pathways that are 

strongly linked to chemotherapy resistance in breast cancer through 

meticulous preprocessing, feature selection, and dimensionality 

reduction strategies. These results imply that particular molecular 

signatures, such as genes linked to drug metabolism, cell cycle 

regulation, and immune response, are crucial in predicting 

treatment outcomes. 

The neural network model achieved the highest accuracy, 

precision, recall, F1-score, and AUC-ROC when compared to other 

conventional machine learning algorithms such as Random Forest 

and Support Vector Machines (SVM). This suggests that deep 

learning algorithms are especially well-suited for this kind of high-

dimensional biological data because of their capacity to grasp 

intricate, nonlinear correlations between features. Early detection 

of chemotherapy resistance could significantly improve clinical 

decision-making by enabling physicians to customize 

chemotherapy regimens according to each patient's unique tumour 

features. 

Notwithstanding the encouraging findings, a number of crucial 

issues need to be resolved in order to move this research from the 

lab to clinical settings. To verify the models' generalizability, they 

must first be evaluated on separate, external datasets. Even though 

this study's cross-validation demonstrated strong performance, 

these models' clinical relevance won't be completely realised until 

they are tested in a variety of patient cohorts, including individuals 

with varied tumour subtypes and demographic backgrounds. 

Additionally, only single-cell RNA sequencing data were used to 

train the models in this study. In order to provide a more 

comprehensive understanding of the biology of the tumour, future 

research should strive to incorporate other omics data, including as 

genomic, proteomic, and metabolomic data. More biomarkers and 

processes linked to chemotherapy resistance may be found using 

multi-omics techniques, which could result in even more precise 

forecasts and a better understanding of the tumour 

microenvironment. 

Enhancing the interpretability of machine learning models 

particularly deep learning models presents another difficulty. 

Despite having strong predictive powers, neural networks are 

frequently regarded as "black boxes," making it challenging to 

comprehend how they make particular predictions. Clinicians may 

be better able to trust and comprehend the results if more 

interpretable models or feature attribution techniques are 

developed. This would make it easier to incorporate the results into 

clinical processes. 

This work concludes by highlighting the potential of integrating 

single-cell RNA sequencing and machine learning to predict 

treatment resistance in breast cancer. We are one step closer to 

providing patients with more effective and customized therapeutic 

alternatives by detecting important molecular traits and utilising 

cutting-edge predictive algorithms. Machine learning has the 

potential to transform precision oncology, enhancing treatment 

outcomes and reducing the impact of chemotherapy resistance on 

breast cancer patients globally with more developments in model 

validation, data integration, and interpretability. 
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