Digital Resurrection of Thonis-Heracleion: Technological Advances in Underwater Archaeology and a Speculative AI-driven Reconstruction Methodology
Keywords:
Thonis-Heracleion, underwater archaeology, photogrammetry, artificial intelligence, digital reconstructionAbstract
This article synthesizes past archaeological research on the submerged Egyptian city of Thonis-Heracleion, critically reviewing excavations and technological interventions deployed since its rediscovery by Franck Goddio and the IEASM team. Situated approximately 10 meters beneath Aboukir Bay near Alexandria, the city represents a significant nexus of Greek and Egyptian cultural heritage, vividly documented in classical sources such as Herodotus and Strabo. Prior excavations have recovered temple complexes, colossal statues, ritual artifacts, and an extensive array of ancient shipwrecks, mapping only a fraction of the extensive site. These investigations utilized pioneering geophysical methods, including multibeam sonar, side-scan sonar, and photogrammetry, establishing a comprehensive baseline for underwater exploration. Reviewing global advances in digital archaeology reveals transformative potential for emerging technologies—namely high-resolution underwater laser scanning, Autonomous Underwater Vehicles (AUVs), and AI-driven analytic frameworks such as neural networks for artifact identification and virtual reconstruction. To advance the Thonis-Heracleion project, this article proposes an interdisciplinary speculative research design integrating sonar and photogrammetric mapping, high-precision laser scanning, AI-assisted interpretation of architectural and textual remains, and immersive digital visualization strategies. This integrative approach leverages computational modeling, procedural reconstruction, and generative adversarial networks (GANs) to hypothesize missing features of the ancient city. Ultimately, the proposed methodology aims to digitally reconstruct Thonis-Heracleion in unprecedented detail, establishing a dynamic, interactive archaeological resource accessible across academic research, heritage conservation, and public engagement domains.
References
1. Alexandrou, A., Škola, F., Skarlatos, D., Demesticha, S., Liarokapis, F., & Aristidou, A. (2024). Underwater virtual exploration of the ancient port of Amathus. Journal of Cultural Heritage, 70, 181-193.
2. Arzomand, K., Rustell, M., & Kalganova, T. (2024). From ruins to reconstruction: Harnessing text-to-image AI for restoring historical architectures.
3. Assael, Y., et al. (2022). Restoring and attributing ancient texts using deep neural networks. Nature, 603, 280–283.
4. Balletti, C., Beltrame, C., Costa, E., Guerra, F., & Vernier, P. (2016). 3D reconstruction of marble shipwreck cargoes based on underwater multi-image photogrammetry. Digital Applications in Archaeology and Cultural Heritage, 3(1), 1–8.
5. Belov, A. (2023). Two bronze waterfowl figureheads from Thonis–Heracleion. International Journal of Nautical Archaeology, 52(2), 255–270.
6. Belov, A. (2022). An Ancient Egyptian Rudder from Thonis-Heracleion. International Journal of Nautical archaeology, 51(2), 325-337.
7. Belov, A., & Laemmel, S. (2024). Two one armed wooden anchors from Egypt from the 5th–4th centuries BC and their ceramic contexts. International Journal of Nautical Archaeology, 54(1), 1–24.
8. Belov, A. (2014). A New Type of Construction Evidenced by Ship 17 of Thonis‐Heracleion. International journal of nautical archaeology, 43(2), 314-329.
9. Bleier, M., van der Lucht, J., & Nüchter, A. (2019, May). Towards an underwater 3D laser scanning system for mobile mapping. In Proceedings of the IEEE ICRA workshop on underwater robotic perception (ICRAURP’19). Montreal, Canada.
10. Bruno, F., Bruno, S., Sensi, G., Luchi, M., Mancuso, S., & Muzzupappa, M. (2010). From 3D reconstruction to virtual reality: A complete methodology for digital archaeological exhibition. Journal of Cultural Heritage, 11(1), 42–49.
11. Bruno, F., Lagudi, A., Barbieri, L., Muzzupappa, M., Cozza, M., Cozza, A., & Peluso, R. (2016, October). A vr system for the exploitation of underwater archaeological sites. In 2016 International Workshop on Computational Intelligence for Multimedia Understanding (IWCIM) (pp. 1-5). IEEE.
12. Chabuk, M. A., & AlAmiri, S. A. (2022). Virtual Reconstruction in 3D Documentation of Built Cultural Heritage. Journal of STEPS for Humanities and Social Sciences, 1(3).
13. Cipriani, L., Bertacchi, S., & Bertacchi, G. (2019). An optimised workflow for the interactive experience with cultural heritage through reality-based 3D models. ISPRS Archives, XLII-2/W11, 427–434.
14. Cotugno, J. (2017). Diving into 3D – Underwater 3D Reconstruction. .
15. Croce, V., Caroti, G., De Luca, L., Piemonte, A., & Véron, P. (2023). Neural radiance fields (NeRF): Review and potential applications to digital cultural heritage. ISPRS Archives, XLVIII-M-2, 453–460.
16. Diodorus Siculus. (1933). Library of history (Vol. I: Books 1–2.34, C. H. Oldfather, Trans.). Loeb Classical Library. Harvard University Press. (Original work published ca. 1st century BCE)
17. Doležal, M., Vlachos, M., Secci, M., Demesticha, S., Skarlatos, D., & Liarokapis, F. (2019). Understanding underwater photogrammetry for maritime archaeology through immersive virtual reality. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 42, 85-91.
18. Dong, M., Chou, W., & Yao, G. (2017). Underwater 3D reconstruction based on geometric transformation of sonar and depth information. IOP Conference Series: Materials Science and Engineering, 261(1), 012014.
19. Drap, P., Durand, A., Provin, R., & Long, L. (2005). Integration of multi-source spatial information and XML information system in underwater archaeology. In Proceedings of the 20th International Symposium, CIPA 2005: International Cooperation to Save the World’s Heritage: Torino (Italy), 26 September–1 October 2005 (Vol. 2).
20. Drap, P., Seinturier, J., Hijazi, B., Merad, D., Boï, J. M., Chemisky, B., Seguin, E., & Long, L. (2015). The ROV 3D Project: Deep-sea underwater survey using photogrammetry. ACM Journal on Computing and Cultural Heritage, 8(21), 1–24.
21. Engesheden, Å. (2006). On the verge of Ptolemaic Egyptian graphical trends in the 30th dynasty. أبجديات, 1(1), 35-41.
22. Evans, D. H., Fletcher, R. J., Pottier, C., Chevance, J. B., Soutif, D., Tan, B. S., ... & Boornazian, G. (2013). Uncovering archaeological landscapes at Angkor using lidar. Proceedings of the National Academy of Sciences, 110(31), 12595-12600.
23. Fabre, D., & Belov, A. (2009, September). The shipwrecks of Heracleion-Thonis: an overview. In Achievements and problems of modern Egyptology. Proceedings of the international conference. September 29-October 4, 2009, Moscow (pp. 107-118).
24. Fabre, D., & Goddio, F. (2013). Thonis-Heracleion, emporion of Egypt, recent discoveries and research perspectives: The shipwrecks. Journal of Ancient Egyptian Interconnections, 5(1), 1-8.
25. Fan, J., Ou, Y., Li, X., Zhou, C., & Hou, Z. (2024). Structured light vision based pipeline tracking and 3D reconstruction method for underwater vehicle. IEEE Transactions on Intelligent Vehicles, 9(3), 3372–3383.
26. Fock, S. M. T. S., Bilich, S., Davis, K., Viswanthan, V. K., Lobo, Z., Lupanow, J., ... & Wood, Z. (2017, March). Pipeline for reconstruction and visualization of underwater archaeology sites using photogrammetry. In Proceedings of the 2017 ISCA International Conference on Computers and Their Applications.
27. Gallo, A., Angilica, A., Bianco, G., Di Filippo, F., Muzzupappa, M., Petriaggi, B. D., & Bruno, F. (2012). 3D reconstruction and virtual exploration of submerged structures. VAST12, 121–128.
28. Gallo, A., Angilica, A., Bianco, G., Di Filippo, F., Muzzupappa, M., Petriaggi, B. D., & Bruno, F. (2012). 3D reconstruction and virtual exploration of submerged structures: A case study in the underwater archaeological site of Baia. VAST12, 121–128.
29. Georgopoulos, A. (2014). 3D virtual reconstruction of archaeological monuments.
30. Goddio, F., von Bomhard, A.-S., & Grataloup, C. (2020). Thônis Héracléion: Mémoire et reflets de l’histoire Saïte. Journal of Egyptian Archaeology, 106(1–2), 171–186
31. Goddio, F. (2007). Underwater archaeology in the Canopic region in Egypt: The topography and excavation of Heracleion-Thonis and East Canopus (1996–2006). Oxford Centre for Maritime Archaeology.
32. Goiran, J.-P., Vittori, C., Noirot, B., & Torab, M. (2018). Relative sea level variations at Alexandria (Nile Delta, Egypt) over the last millennia: Archaeological implications for the ancient harbour. Ägypten und Levante / Egypt and the Levant, 28, 219–233.
33. Guerneve, T., Subr, K., & Petillot, Y. 3D Reconstruction of Underwater objects using wide-aperture Imaging SONAR. J Field Robotics, 28(5), 1-9.
34. Hamouda, A., El Gendy, N., El Gharabawy, S., & Salah, M. (2015). Acoustic survey along Heraklieon and East Canopus Ancient Greek cities, Abu Qir Bay, Alexandria, Egypt. Journal of Earth Science & Climatic Change, 6(3), 289. https://doi.org/10.4172/2157 7617.1000289
35. Haydar, M., Maidi, M., Roussel, D., Mallem, M., Drap, P., Bale, K., & Chapman, P. (2008). Virtual exploration of underwater archaeological sites. Proceedings of VAST08, 141–148.
36. Heinz, S. S. (2011). The lead statuettes and amulets of Heracleion-Thonis. Pallas. Revue d'études antiques, (86), 211-232.
37. Henderson, J., Pizarro, O., Johnson-Roberson, M., & Mahon, I. (2013). Mapping submerged archaeological sites using stereo‐vision photogrammetry. International Journal of Nautical Archaeology, 42(2), 243–256.
38. Herodotus. (1998). The histories (R. Waterfield, Trans.; C. Dewald, Ed.). Oxford University Press. (Original work published ca. 430 BCE)
39. Jiang, S., Sun, F., Gu, Z., Zheng, H., Nan, W., & Yu, Z. (2017). Underwater 3D reconstruction based on laser line scanning. OCEANS 2017 - Aberdeen, 1–6.
40. Kiser, B. (2014). Books in brief. Nature, 533(467), 467.
41. Lichtheim, M. (1976). Ancient Egyptian Literature, Volume II: The New Kingdom. University of California Press.
42. Mahiddine, A., Seinturier, J., Boï, J. M., Drap, P., & Merad, D. (2012, June). Performances analysis of underwater image preprocessing techniques on the repeatability of SIFT and SURF descriptors. In WSCG 2012: 20th International Conference on Computer Graphics, Visualization and Computer Vision.
43. Mahon, I., Pizarro, O., Johnson-Roberson, M., Friedman, A., Williams, S. B., & Henderson, J. C. (2011, May). Reconstructing pavlopetri: Mapping the world's oldest submerged town using stereo-vision. In 2011 IEEE International Conference on Robotics and Automation (pp. 2315-2321). IEEE.
44. Marriner, N., Flaux, C., Morhange, C., & Kaniewski, D. (2012). Nile Delta's sinking past: Quantifiable links with Holocene compaction and climate-driven changes in sediment supply? Geology, 40(12), 1083–1086.
45. Minas-Nerpel, M. (2011). La stèle de Ptolémée VIII Évergète II à Héracléion. The Journal of Egyptian Archaeology, 97, 281–283.
46. Nelson, E. A., Dunn, I. T., Forrester, J., Gambin, T., Clark, C., & Wood, Z. J. (2014). Surface reconstruction of ancient water storage systems: An approach for sparse 3D sonar scans and fused stereo images. GRAPP 2014, 1–8.
47. Nornes, S. M., Ludvigsen, M., Ødegård, Ø., & Sørensen, A. (2015). Underwater photogrammetric mapping of an intact standing steel wreck with ROV. IFAC-PapersOnLine, 48(2), 206–211.
48. Pacheco-Ruiz, R., Adams, J., & Pedrotti, F. (2018). 4D modelling of low visibility Underwater Archaeological excavations using multi-source photogrammetry in the Bulgarian Black Sea. Journal of Archaeological Science, 100, 120-129.
49. Pfeiffer, S. (2010). Naukratis, Heracleion-Thonis and Alexandria-Remarks on the presence and trade activities of Greeks in the north-west Delta from the seventh century BC to the end of the fourth century BC.
50. Prado, E., Gómez-Ballesteros, M., Cobo, A., Sánchez, F., Rodriguez-Basalo, A., Arrese, B., & Rodríguez-Cobo, L. (2019). 3D modeling of Rio Miera wreck ship merging optical and multibeam high resolution points cloud. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 42, 159-165.
51. Qu, S. (2024). Advances in integrating GANs and NeRF for image generation and 3D reconstruction. Transactions on Computer Science and Intelligent Systems Research. 7.
52. Robinson, D., Goddio, F., & Fabre, D. (2017). Environment and agency in the formation of the Eastern ship graveyard in the Central Basin at Thonis Heracleion, Egypt. In A. Caporaso (Ed.), When the land meets the sea: Formation processes of maritime archaeological landscapes (pp. 113–140). Springer.
53. Robinson, D. (2018). The depositional contexts of the ships from Thonis‐Heracleion, Egypt. International Journal of Nautical Archaeology, 47(2), 325–336.
54. Roman, C., Inglis, G., & Rutter, J. (2010). Application of structured light imaging for high resolution mapping of underwater archaeological sites. OCEANS'10 IEEE SYDNEY, 1–9.
55. Royal, J. G. (2011). New evidence for old sites: A response to the ‘reassessment’ of the survey data. International Journal of Nautical Archaeology, 40(2), 427–432.
56. Scianna, A., Gaglio, G. F., & La Guardia, M. (2021). Accessibility to underwater cultural heritage: Interactive web navigation of the Roman submersed vessel of Cala Minnola. Arqueologica 2.0. 1-9
57. Stanley, J. D., et al. (2007). Geoarchaeology: Underwater Archaeology in the Canopic region in Egypt. Oxford Centre for Maritime Archaeology Monograph Series.
58. Stoean, R., Bacanin, N., Stoean, C., & Ionescu, L. (2024). Bridging the past and present: AI-driven 3D restoration of degraded artefacts for museum digital display. Journal of Cultural Heritage, 69, 18-26.
59. Stoean, C., et al. (2024). AI-driven restoration and classification in underwater archaeology. Heritage AI Journal, 5(1), 55–73
60. Strabo. (1932). Geography (Vol. VIII: Books 17–17, H. L. Jones, Trans.). Harvard University Press. (Original work published ca. first century CE)
61. Tartaron, T. F. (2016). Damian Robinson & Franck Goddio (ed.). Thonis-Heracleion in context (Oxford Centre for Maritime Archaeology Monograph 8). 2015. xiii+ 319 pages, numerous colour and b&w illustrations, 6 tables. Oxford: School of Archaeology, University of Oxford; 978-1905905331 hardback£ 45. Antiquity, 90(352), 1126-1127.
62. Teague, J., & Scott, T. (2017). Underwater photogrammetry and 3D reconstruction of submerged objects in shallow environments by ROV and underwater GPS. Journal of Marine Science Research and Technology.
63. Vandenabeele, L., Häcki, M., & Pfister, M. (2023). Crowd-sourced surveying for building archaeology: The potential of Structure from Motion and Neural Radiance Fields. ISPRS Archives, XLVIII-M-2, 1599–1606.
64. van der Wilt, E. M. (2019). Ten lead containers from Thonis–Heracleion: Tackling the problem of dating. British Museum Studies in Ancient Egypt and Sudan, 25.
65. Verdiani, G. (2017). From the archaeological reality to the digital reconstruction: An architectural drawing challenge. Proceedings of the Digital Heritage International Congress, 10.
66. Viswanathan, V. K., Lobo, Z., Lupanow, J., Fock, S. S. V., Wood, Z. J., Gambin, T., & Clark, C. (2017). AUV motion-planning for photogrammetric reconstruction of marine archaeological sites. IEEE International Conference on Robotics and Automation (ICRA), 5096–5103.
67. von Bomhard, A.-S. (2012). The decree of Saïs: The stelae of Thonis-Heracleion and Naukratis. Oxford Centre for Maritime Archaeology, School of Archaeology, University of Oxford.
68. von Bomhard, A.-S. (2014). Heracles and the hone: About a foundation deposit from the temple of Thonis‑Heracleion. The Journal of Egyptian Archaeology, 100(1), 339–355.
69. Wu, J., Bingham, R. C., Ting, S., Yager, K., Wood, Z. J., Gambin, T., & Clark, C. (2019). Multi-AUV motion planning for archeological site mapping and photogrammetric reconstruction. Journal of Field Robotics, 36(8), 1250–1269.
70. Wu, J., Yu, B., & Islam, M. (2023). 3D reconstruction of underwater scenes using nonlinear domain projection. 2023 IEEE Conference on Artificial Intelligence, 359–361.
71. Yager, K., Clark, C., Gambin, T., & Wood, Z. J. (2019). Underwater photogrammetry reconstruction: GPU texture generation from videos captured via AUV. In Lecture Notes in Computer Science, 127–138.
